Evaluation of a Detailed Reaction Mechanism for Partial and Total Oxidation of C1 - C4 Alkanes
نویسندگان
چکیده
ACKNOWLEDGMENTS I would like to acknowledge to all the people who helped me directly or indirectly to accomplish this dissertation: First and foremost, I would like to express all my gratitude towards Prof. Dr. Dr. h. c. Jürgen Warnatz for giving the opportunity to share an unforgettable time in his group in Heidelberg. To Prof. Dr. Olaf Deutschmann and his family, for his support during my time in Heidelberg, for the useful comments and great support in the development of my work and for his friendship during difficult moments. To Farid Chejne, my former tutor in Colombia, for his tireless compromise with all of us, for being more than a tutor, a friend. I am also thankful to my colleagues at IWR: Ingrid for her collaboration with all the administrative details, to Barbara for her unvaluable help, to Jürgen Moldenhauer, Till Katzenmeier, Volker Karbach, Shaik and all my coworkers for their help and understanding. Finally, I would like to thank Sophia, for her boundless love, faith in me, and encouragement and for bring to my life the most beautiful thing that ever happen to me: Madeleine, without both of you this work would still not be completed. ii iii ABSTRACT In the present work a chemical kinetic mechanism was developed, suitable for modeling combustion and partial oxidation processes of C 1 – C 4 alkanes. The gas-phase kinetic mechanism describes intermediate and high temperature chemistry. Accordingly, the formation and evolution of important intermediate gas-phase species: Olefins and oxygenates were described in terms of different pathways typical at those temperature regimes. A previously developed mechanism suitable for high temperature conditions was extended by including reactions which described the chemistry of total and partial oxidation of methane, ethane, propane, butane, lower alkenes and formation and consumption of their characteristic organic hydro-peroxide radicals and cyclical compounds. The kinetic mechanism was validated by comparing calculated results of ignition delay times, against experimental data obtained in shock tubes, for various hydrocarbons and their mixtures, over a wide range of reaction conditions (temperature, pressure and mixture composition). Further, the kinetic mechanism was evaluated by comparing numerical simulations against experimentally obtained concentration profiles of the main gas-phase species, measured in jet stirred reactors for different hydrocarbons and their mixtures during partial oxidation. Next, the mechanism was applied to get a better understanding of the interactions between flow, mass transfer and homogeneous-heterogeneous chemistries during the catalytic partial oxidation …
منابع مشابه
Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity
Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2), propane (C3), and butane (C4) in anoxic sediments in contrast to methane (C1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often...
متن کاملDetailed Kinetic Modelling of the Oxidation and Combustion of Large Hydrocarbons Using an Automatic Generation of Mechanisms
A mechanism generator code to automatically generate mechanisms for the oxidation and combustion of large hydrocarbons has been successfully modified in this work. The modification was through: (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formati...
متن کاملGeomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments
Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To...
متن کاملHeterogeneous Partial (amm)Oxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides
This paper presents an overview of heterogeneous partial (amm)oxidation and oxidative dehydrogenation (ODH) of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and pl...
متن کاملThe Gas Phase Oxidation of Acetaldehyde Reaction Mechanism and Kinetics
The mechanism of the low temperature oxidation of gaseous acetaldehyde was investigated in the temperature range of 1 50-400?°C. The minor, intermediate and major products were identified and measured quantitatively by sampling directly into the ionization chamber of an MS10-C2 mass spectrometer from the reactor. The formation of H2O, CO, CO2, HCOOH, H2, HCHO, CH3COOH and CH3OH as the major pro...
متن کامل